Nate Schmidt
Determining the Gas Constant "R"
PRE-LAB DISCUSSION
The basis of this experiment is the following reaction in which you will react a known mass of Magnesium with excess hydrochloric acid to produce the substances shown: $\mathrm{Mg}+2 \mathrm{HCl}$ 図 $\mathrm{MgCl} 2+\mathrm{H} 2$
The hydrogen gas is the product that is of interest to you in this experiment. You will make an experimental determination of the number of moles of hydrogen molecules produced and the volume occupied by these molecules. The number of moles of hydrogen will be determined indirectly. The balanced equation for this reaction shows that the molar ratio of magnesium reacted to hydrogen gas produced is $1: 1$. Therefore, by determining the mass of magnesium that reacts and the number of moles that this mass is equal to, you will also determine the number of moles of hydrogen gas produced. The volume of hydrogen gas produced will be measured directly on the scale of a gas-measuring tube. The gas laws of Boyle and Charles will be used to correct this volume, measured under laboratory conditions, to the volume the sample of gas would occupy at STP. The collected data (number of moles and volume at STP) will be used to calculate the molar volume of the hydrogen gas. This experiment should aid in the understanding of the mole concept and the concept of molar volume of a gas.
PURPOSE
Determine the volume of 1 mole of hydrogen gas at STP using experimental data, known mathematical relationships, and a balanced chemical equation. EQUIPMENT
gas-measuring tube and stopper, beaker $400-\mathrm{mL}$, ring stand, graduated cylinder, utility clamp, metric ruler, thermometer, and safety glasses.
CHEMICALS: magnesium ribbon (Mg); 3 M hydrochloric acid (HCI) CAUSTIC ! PROCEDURE

1. Obtain $2.3-2.6 \mathrm{~cm}$ a piece of magnesium ribbon from your teacher. Measure the length in millimeters. Record the length in your data table.
2. Obtain a 50.00 mL gas collection tube. Remove the rubber stopper with copper metal loop from the tube. Wrap the piece of magnesium around the copper loop so that it will fit easily into the gas-measuring tube.3. Add about 300 mL of water to a $400-\mathrm{mL}$ beaker. Set up a ring stand and utility clamp, and place the beaker of water in the position shown in Fig. 29-2
3. Obtain 10 mL of 3 M hydrochloric acid (HCI). (CAUTION: Handle this acid with care.) Carefully pour the HCl into a gas-measuring tube. Don't spill. 5. Tilt the gas-measuring tube slightly. Using a beaker, SLOWLY fill the gas- measuring tube with water. Try to avoid mixing the acid and water as much as possible.
4. Insert the one-hole rubber stopper firmly into the tube as shown in Figure 29-1.
5. Place your finger over the hole in the rubber stopper and invert the gas- measuring tube. Lower the stoppered end of the tube into the beaker of water. Clamp the tube in place so that the stoppered end rests on the bottom of the beaker (Figure 29-2).
6. Let the apparatus stand about five minutes after the magnesium has completely reacted. Carefully measure the volume of gas produced to the tenth of a milliliters.
7. Place a thermometer in the 400 ml beaker for 5 minutes and measure the water temperature.
OBSERVATIONS AND DATA TABLE
(a) length of Mg ribbon \qquad mm (b) mass of 1000 mm of $\mathrm{Mg}=(\mathrm{c})$ volume of H 2 gas in tube \qquad ml (d) water temperature \qquad类 C (e) barometric pressure (from your instructor)
f. water vapor pressure at room temperature \qquad (see table in book)
Lab for Finding Gas Constant R
Title Purpose List equipment needed Step by step procedure Data table Calculations
8. Determine the moles of Mg used.
9. Show reaction and then determine the moles of H 2 in the gas collecting tube.
10. Determine the volume of gas in the gas collecting tube.
11. Determine the Kelvin temperature of the gas in the tube.
12. Determine the pressure of H 2 in the gas collecting tube.(NOTE - you will need to know the partial pressure of $\mathrm{H} 2 \mathrm{O}(\mathrm{g})$ at the temperature in \#4)
13. Determine the ideal gas constant R 7. Find you personal \% error 8. Plot a graph to find the class average value of R. 9 . Calculate the class average $\%$ error.
Discussion of results paragraph Conclusion paragraph

Calculation Section

PUT UNITS EVERYWHERE

1. Finding mass of Mg reacted in Mg
24.5 mm Mg (1.414/1000.mm) $=.0346 \mathrm{~g} \mathrm{Mg}$
2. Find moles of H_{2} formed
$\mathrm{Mg}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq})-->\mathrm{MgCl}_{2}+\mathrm{H}_{2}$
$.0346 \mathrm{~g} \mathrm{Mg}(1 \mathrm{~mol} \mathrm{Mg} / 24.305 \mathrm{~g})(1 \mathrm{~mol} \mathrm{H} / 11 \mathrm{~mol} \mathrm{Mg})=.00142 \mathrm{~mol} \mathrm{H}_{2}$
3. Finding Vapor Pressure of water at $23.1^{\circ} \mathrm{C}$.

From http://intro.chem.okstate.edu/1515sp01/database/vpwater.html
$\mathrm{PH} 2 \mathrm{O} @ 23.0^{\circ} \mathrm{C}=21.1 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{PH} 2 \mathrm{O} @ 24.0^{\circ} \mathrm{C}=22.4 \mathrm{~mm} \mathrm{Hg}$
Assume the increase from $23.0^{\circ} \mathrm{C}-->24.0^{\circ} \mathrm{C}$ is constant, increase per $1 / 10^{\circ} \mathrm{C}$ is:
For temp increase of $1^{\circ} \mathrm{C}$ pressure increased by 1.3 mm Hg .
$\mathrm{PH} \mathrm{H}_{2} @ 23.1^{\circ} \mathrm{C}=21.2 \mathrm{~mm} \mathrm{Hg}$.
4. Finding Partial pressure of H_{2}
$\mathrm{PH}_{2} \mathrm{O}=$ PTotal- $-\mathrm{PH}_{2} \mathrm{O}$
$=751.6 \mathrm{~mm} \mathrm{Hg}-21.2 \mathrm{~mm} \mathrm{HG}$
$=730.4 \mathrm{~mm} \mathrm{Hg}(1.000 \mathrm{~atm} / 760.0 \mathrm{mmHg})$
$=.9611 \mathrm{~atm}$
5. Temperature of H_{2}

Temperature $=23.1^{\circ} \mathrm{C}+273.2$
6. Volume of H_{2} Volume $=36.60 \mathrm{~mL}\left(1 \mathrm{~L} / 10^{\wedge} 3 \mathrm{~mL}\right)=.03660 \mathrm{~L}$
7. Finding Gas constant "R"
$R=P V$
nT
$=.9611$ atm $x .03660 \mathrm{~L}$
.00142mol x 296.3K
$=.0836 \mathrm{~atm} \times \mathrm{L}$
mol x K
8. Finding \% Error \% Error= I acc-ex |
------------ x 100\%
acc
=.08206-. 0836
------------------ x 100\%
.08206
$=.0015$
---------- x 100 \%
.08206
=1.9\%

description	
Mass of $\mathrm{Mg}(\mathrm{g})$.0346 g
Moles of H_{2}	$.00142 \mathrm{~mol} \mathrm{H}_{2}$
Partial pressure $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})(\mathrm{mm} \mathrm{Hg})$	21.2 mm Hg
Partial pressure $\mathrm{H}_{2}(\mathrm{~g})(\mathrm{atm})$.9611 atm
Temperature of $\mathrm{H}_{2}(\mathrm{~g})(\mathrm{K})$	296.3 K
Volume of H_{2}	.03660 L
Finding gas constant * $\mathrm{R}^{*}(\mathrm{~atm} \mathrm{~L})$ (mole K)	$.0836(\mathrm{~atm} \mathrm{x} \mathrm{L)/(mol} \mathrm{x} \mathrm{K)}$
Error \%	1.9%

The results should have been .08206 ($\mathrm{atm} \times \mathrm{L}) /(\mathrm{mol} \times \mathrm{K})$. The result was .0836 (atm x $\mathrm{L}) /(\mathrm{mol} x \mathrm{~K})$ and was lower than expected. Trapped air bubbles could have caused a change in the end result. This is because trapped air bubbles in the water would be measured as less gas in the gas collecting tube, therefore having a lower answer. The
meniscus was lower than the water level, therefore having a higher volume which made the final answer higher than it should have been. The Magnesium was cut at a 90° angle, so there was not an angled end. The Magnesium could have floated to the top and didn't all react, making there be less gas in the gas collecting tube.
Conclusion
The basis of this experiment is the following reaction in which a known mass of Magnesium was reacted with excess hydrochloric acid to produce substances. A brief procedure of the lab was to fill a gas collecting tube with 10 mL of hydrochloric acid, and then tying a strip of Magnesium to the bottom. Next, the gas collecting tube was flipped upside down in the water in the graduated cylinder, and the meniscus was put at the exact line of the water in the graduated cylinder, the measurement was recorded. The result should have been $.08206(\mathrm{~atm} \times \mathrm{L}) /(\mathrm{mol} \times \mathrm{K})$. The result was $.0836(\mathrm{~atm} \times \mathrm{L}) /(\mathrm{mol}$ $x \mathrm{~K}$), which was lower than expected. The major source of error were the trapped air bubbles that didn't get to the other gas in the gas collecting tube which caused the equation to have a lower answer. The results were supported by the theoretical result.

